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Polyakov loop and hidden global symmetries



“Hidden” symmetry

In QCD there is a local SU(3) gauge symmetry: 

Aµ(x) !
1

�ig

⌦†(x) (@µ � igAµ(x))⌦(x)

Gauge transformation Ω(x) differs at each x.  

Subset of local: global gauge transf’s, Ω(x) = Ω:

So what? Ω is a SU(3) matrix, so det Ω = 1.  Consider

det Ω1 = (e2πi/3)3 = 1: 
Ω1 is a SU(3) matrix

But: Ω1 is ~ to unit matrix!

Aµ(x) ! ⌦†
Aµ(x)⌦

⌦1 =

0

@
e2⇡i/3 0 0
0 e2⇡i/3 0
0 0 e2⇡i/3

1

A = e2⇡i/31



Global Z(3) symmety

Because Ω1 is proportional to unit matrix, gluons invariant:

Aµ(x) ! ⌦†
1Aµ(x)⌦1 = e�2⇡i/3

Aµ(x) e
2⇡i/3 = Aµ(x)

Quarks are not, since they pick up a phase

q(x) ! ⌦(x) q(x) ; ⌦1 q = e2⇡i/3q 6= q

There are three such phases: global Z(3) symmetry hidden in SU(3)

Without quarks, absolute measure of confinement/deconfinement, ~ Z(3)

With quarks, only approximate measure: for QCD, good or bad approximation?

⌦1 = e2⇡i/3 1 , ⌦2 = e�2⇡i/3 1 , ⌦3 = 1



Lines and Loops

Consider Wilson line in (imaginary) time direction:

L(~x) = P exp(ig

Z 1/T

0
A0(~x, ⌧)d⌧)

Like propagator of heavy quark.  Under a gauge transformation,

L(~x) ! ⌦†(~x, 1/T )L(~x)⌦(~x, 0)

If only gluons, can choose gauge transf’s periodic only up to Z(3):

Trace of Wilson line = Polyakov-Susskind loop is gauge invariant up to Z(3)

⌦(~x, 1/T ) = e2⇡i/3 ⌦(~x, 0)

`(~x) =
1

3
trL ! e2⇡i/3 `(~x)



Confinement as Z(3) domains

Confining vacuum: 

domains of Z(3) phases, 

randomly disordered.

Propagation through domains:

phase is random, averages to zero, 

so ⟨propagator⟩ ~ ⟨loop⟩ = 0

e2⇡i/3 + e�2⇡i/3 + 1 = 0

Confinement is not infinite (effective) mass
but phase decoherence, ~ Anderson localization



Deconfinement at temperature T ≠ 0

As T → ∞, g2(T) ~ 1/log(T).  Hence A0 is small,  ⟨loop⟩ ~ 1.

Two phases: confining, T < Td: ⟨loop⟩ = 0.  Deconfining,  T > Td: ⟨loop⟩ > 0

First order for 3 colors: cubic invariant from Z(3) symmetry.



Z(3) interface tension, potential for A0.



Z(3) degenerate vacua

Consider a classical field, Acl
0 =

2⇡T

3g
q t8 t8 =

0

@
1 0 0
0 1 0
0 0 �2

1

A

If we take q = 1, 2, or 3, we get Z(3) states

But what about arbitrary constant q?  As constant, diagonal field,  Gμν = 0.  

So then any q is a vacuum?  Can’t be right, should only be 3 vacua.

Will show: classical degeneracy lifted by quantum effects.  

Compute at high temperature, so semi-classical expansion should be ok.
                  Gross, RDP, Yaffe ’81; Weiss, ’82; Bhattacharya, Gocksch, Korthals-Altes & RDP, ‘91

Gµ⌫ = @µA⌫ � @⌫Aµ � ig[Aµ, A⌫ ]

L(Acl
0 ) = e2⇡ij/3 1



Lifting the degeneracy

Expand about classical field to one loop order, 

Aµ = Acl
µ +Aqu

µ , Acl
µ = �µ0

2⇡T

3g
q t8

Use the background field method, L. Abbott, Nucl Phys B185, 181 (1985)

Squ
=

1

2

tr log(�D2
cl)

This is valid only for the above classical field.  We need to evaluate

At T ≠ 0
i@0 = p0 = 2⇡T n , n = 0,±1,±2 . . .

Z
dk0
2⇡

! T
X

n

Dcl
µA

qu
⌫ = @µA

qu
⌫ � ig[Acl

µ , A
qu
⌫ ]



t+4 =

0

@
0 0 1
0 0 0
0 0 0

1

A ; t�4 =

0

@
0 0 0
0 0 0
1 0 0

1

A tr(t+4 t
�
4 ) = 1 , tr(t+4 t

+
4 ) = tr(t�4 t

�
4 ) = 0

Tricks to compute

How to deal with [A0cl , Aνqu]?  Useful to us ladder generators, as for SU(2):

[t8, t
±
4 ] = ± 3 t±4Very simple commutator!

Then all of the messy SU(3) matrices collapse, as 

Dcl
0 A

qu,4±
⌫ = @0A

qu,4±
⌫ � ig[Acl

0 , A
qu,4±
⌫ ] = �i 2⇡T (n± q)Aqu,4±

⌫

In background A0, all p0’s get shifted from 2πT * integer to
                                             2πT * (integer + q).



More tricks: sum over “n” last

We need

We assume that “q” is constant, and so this is a potential, Vqu(q).

When in doubt, differentiate

In the loop, first integrate over spatial p!

(16⇡T )T
+1X

n=�1

Z
d3p

(2⇡)3
p+0

(p+0 )
2 + ~p 2

= �16⇡2T 4
+1X

n=�1
(n+ q)|n+ q|

Vqu
(q) = 4 tr log((p+0 )

2
+ ~p 2

) , p+0 = 2⇡T (n+ q)

@

@q
Vqu(q) = 8 (2⇡T )tr

p+0
(p+0 )

2 + ~p 2



ζ functions

Zeta functions are very useful: ⇣(r, q) =
1X

n=1

1

(n+ q)r

Turn the sum over all “n” into positive “n”, 
+1X

n=�1
(n+ q)|n+ q| = ⇣(�2, q)� ⇣(�2, 1� q)

Useful identity:

⇣(�2, q) = � 1

12

d

dq
q2(1� q)2

We finally get

Vqu(q) =
8⇡T 4

3
q2(1� q)2



Lifting the degeneracy

Quantum fluctuations generate a potential for q,

q = 0 and 3 are the same, just shows that q is a periodic variable.

Non-trivial: q = 1 and 2 are degenerate with q = 0 , 3 : Z(3) symmetry!

N.B.: above potential is only valid for 0 ≤ q ≤ 1: periodic, as shown, for other q.

V(0) includes the free energy of massless gluons, - 8 π2 T4/45.

Vqu(q) "

L(q) = e2⇡ij/3 1 if q = j

L(q) = e2⇡ij/3 1 if q = j

Vqu(q) =
8⇡T 4

3
q2(1� q)2

q→
3210



So what? Z(3) interface tension

Consider a box which is long in one (spatial) direction, with one vacuum

at one end, and a different, but degenerate vacua, at the other.

z

Between the two vacua, an interface forms, with finite energy ~ Vtr.

In weak coupling, we can compute this using the potential above.

L = 1

L = e2⇡i/31



A tunneling problem

Now let q, which was constant, become q(z).

The classical action is

We can combine the two, to get

1

2
tr(Gcl

µ⌫)
2 ⇠

✓
dAcl

0

dz

◆2

=
8⇡2T 2

3 g2

✓
dq

dz

◆2

Scl + Vqu = Vtr
8⇡2T 3

3 g

Z
dez
 ✓

dq

dez

◆2

+ q2(1� q)2
!

, ez = g T z

The classical term is 1/g2; the quantum potential, g0.

Balancing the two gives an action in between, ~ 1/g (= √g2)

At small g the interface is wide, ~ 1/gT: approx constant q ok.  

�Z(3) =
8⇡2

9

T 3

p
g2
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Lattice: Z(N) interfaces = ‘t Hooft loop
From lattice: semi-classical Z(N) interface tension works well to ~ 10 Tc .
 
σZ(3) ~ ‘t Hooft loop: Korthals-Altes, Kovner & Stephanov, hep-ph/9909516

For N ≥ 4, several interface tensions: satisfy semi-classical relation down to Td: 
Bursa & Teper, hep-lat/0505025

←de Forcrand & Noth, 
hep-lat/0506005.  

L : 1� e2�ik/N 1

��k =
k(N � k)

N � 1
��1

T/�MS �

��lattice

��semi�class.
�

1.0�

0.9�



Results from the lattice, pure glue and not



Lattice: renormalized loop, no quarks
Renormalized loop from lattice: Gupta, Hubner & Kaczmarek 0711.2251.  
⟨loop⟩ = 0 , T < Td.  Confined phase
1/2 < ⟨loop⟩ < 1, T: Td.  → 4 Td , “semi” QGP, partially deconfined.  Broad region
⟨loop⟩ ~ 1, T > 4 Td   , perturbative QGP
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-direct renormalization
QQ renormalization

Ren’d
triplet 
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  ~ 1/2→

←Td

←4 Td

T/Td→
12Td↓



Potential for A0, with quarks

Including the potential with quarks, Acl
0 =

2⇡T

3g
q t8

q→
0 1 2 3

Vqu(q) "

Quarks ↓ ↓ Gluons

L(q) = e2⇡ij/3 1 if q = j

Above for 3 massless flavors.  

With quarks, the Z(3) vacua with q = 1 and 2 are no longer degenerate.  

Dynamical breaking of Z(3) symmetry by dynamical quarks.



 Lattice: renormalized loop, with quarks
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P3 N⌧ = 6
N⌧ = 8
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←    Hadronic           →  ←Semi-QGP→  ←Perturbative  QGP

Tχ↑

With quarks, <loop> ≠ 0 at any T ≠ 0
Lattice: QCD, 2+1 flavors.  Tχ ~ 155 MeV, crossover.
Ren.’d Polaykov loop very small at Tχ, semi-QGP until ~ 3 Tχ.  

Broad in T: why does HRG fail at ~ 140 MeV?  Why χSB’g in ~ confined phase?

Petreczky & Schadler, 
1509.07874  

Ren.’d
triplet 
loop ↑



 Technical aside
Can measure renormalized Polyakov loops in any representation.

Appear to satisfy universal scaling relation, both in pure glue & with quarks

Pure glue: Gupta, Hubner & Kaczmarek 0711.2251. With 2+1 flavors:
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Lattice: first order
“Pure” SU(3), no quarks.  Weakly first order.  Peak in (e-3p)/T4, just above Td.  
Borsanyi, Endrodi, Fodor, Katz, & Szabo, 1204.6184

long tail?

↑ Td 2.5 Td ↑

e� 3p

T 4
⇥



Lattice: deconfined strings

Borsanyi, Endrodi, Fodor, Katz,
& Szabo, 1204.6184 

10 Td ↑↑ Td

Td → 4 Td: leading correction

to ideal gas, ~ T4,  is ~ T2

not a bag constant, T0

Term ~ T2 is like the

pressure of deconfined strings

~ constant for all SU(N)

(e� 3p)

T 2T 2
d

"

p(T ) ⇠ #(T 4 � c T 2 T 2
d ) , c ⇡ 1



Lattice: deconfined strings for SU(N), 2+1 dimensions

1
N2 � 1

e� 2p

T 3
"

Td/T→

↑ 10 Td ↑ 1.1 Td↑ 2 Td

Caselle, Castagnini, 
Feo, Gliozzi, Gursoy,
 Panero, Schafer, 
1111.0580

In 2+ 1 dimensions, hidden scaling again ~ T2: not a mass term, ~ m2 T:

p(T ) ⇠ #(T 3 � c T 2 Td) , c ⇡ 1



Matrix model for pure glue theories



Path to confinement

⟨Wilson line⟩ is a matrix, so diagonalize.  SU(3): 2 diagonal generators,  t3 & t8 :

Above, paths along t8, give Z(3) transf’s.  Now consider paths ~ t3:

=

0

@
e2⇡i q/3 0 0

0 e�2⇡iq/3 0
0 0 1

1

A

` =
1

3

trL =

1

3

✓
1 + 2 cos

✓
2⇡q

3

◆◆

t3 =

0

@
1 0 0
0 �1 0
0 0 0

1

A , t8 =

0

@
1 0 0
0 1 0
0 0 �2

1

A

L = e2⇡i q t3/3

Confining vacuum: q = 1, ⟨loop⟩ = 0  



Matrix model for pure glue
Perturbative potential is ideal gas + previous potential for q

Vpert(q) =
2⇡2

3
T 4(� 4

15
+

X

a,b

q2ab(1� qab)
2) , qab = |qa � qb|mod 1

V
non

(q) =
2⇡2

3
T 2 T 2

d

X

a,b

(� c1qab(1� q
ab

)� c2q
2
ab

(1� q
ab

)2 +
4

15
c3)

Assume non-pert. potential ~ T2:

From lattice data, constant term ~ c3 most important for T > 1.2 Td.

Thus expect that the q’s only matter for T < 1.2 Td : narrow transition region

Also added a bag constant B (helps with latent heat, not essential)

Dumitru, Guo, Hidaka, Korthals-Altes & RP, 1011.3820 & 1205.0137 + ….
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Matrix model: parameters from the lattice

Choose 2 free parameters to fit:
latent heat at Tc, (e-3p)/T4 at large T

Reasonable value for bag constant B:

e� 3p

8 T 4
"

↑ Td 3Td ↑T/Td→

 ⇐ Lattice  

 ⇐ 2-parameter model

Td = 270 MeV, B~ (262 MeV)4

Latent heat, lattice:
Beinlich, 
Peikert, Karsch 
lat/9608141
Datta, Gupta 
1006.0938

c1 = .88, c2 = .55, c3 = .95



Matrix model: interface tension vs lattice
Matrix model works well:
Lattice: de Forcrand, D’Elia, & Pepe, lat/0007034;  de Forcrand & Noth lat/0506005
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Matrix model: Polyakov loop vs lattice
Renormalized Polyakov loop from lattice nothing like Matrix Model

Model: transition region narrow, to ~ 1.2 Td. Lattice: loop wide, to ~ 4.0 Td.

 ⇐ lattice

 ⇑ 0-parameter

1-parameter ⇓

Lattice: Gupta, Hubner,
and Kaczmarek,  0711.2251.

 0.2

 0.4

 0.6

 0.8

 1

 1  1.1  1.2  1.3  1.4  1.5

〈t
r 

L
/3

〉

T / TC

0-param. model

1-param. model

2-param. model

Lattice

↑ Td 1.5 Td ↑T→

⇥�⇤ �

 ⇐ 2 parameter



Birdtrack diagrams for SU(N)



Another basis…

Above t3 picks out a given direction in color space….why?  

Need a new basis with no preferred direction.  SU(2): three gen.’s.  Two ladder:

t12 = �+ =
1p
2

✓
0 1
0 0

◆
, t21 = �� =

1p
2

✓
0 0
1 0

◆

t11 ⇠ �3 =
1

2
p
2

✓
1 0
0 �1

◆
, t22 ⇠ ��3 =

1

2
p
2

✓
�1 0
0 1

◆

and one diagonal.  Be perverse, and add two.  N.B.: t11 + t22 = 0

Perverse, but no preferred direction.  Normalization weird with one extra gen.:

tr t12t21 =
1

2
, tr(t12)2 = tr(t21)2 = 0

tr (t11)2 = tr(t22)2 =
1

4
, tr(t11t22) = �1

4



Weird basis

t33 = t8 =

0

@
1 0 0
0 1 0
0 0 �2

1

A , t22 =

0

@
1 0 0
0 �2 0
0 0 1

1

A , t11 =

0

@
�2 0 0
0 1 0
0 0 1

1

A

For SU(3), take a basis with one extra diagonal generator (t11 + t22 + t33 = 0)

No gen. like SU(2), diag(1,-1,0): 
no preferred direction.  Overcomplete by one generator.

Diagramatically, easy to generalize to arbitrary SU(N):

(tab)cd =
1p
2

✓
�ac �bd � 1

N
�ab �cd

◆



Birdtracks = double line basis

NX

a=1

taa =
X

a,b

tab�ba =

Basis overcomplete by one: 

Product of two generators is a projector:
tr(tabtcd) =

1p
2
(tab)dc

P. Cvitanovic, http://birdtracks.eu ; Y. Hidaka & RDP 0803.0453



And on with birdtracks

(tabtba)cd =
N2 � 1

2N
�cd

Can derive arbitrary SU(N) identities by pecking:

Antisymmetric fab,cd,ef is simple:

Symmetric fab,cd,ef is not, because of the traces: this is why SU(N) is hard!



(( ) )
−

1

N
−

1

N

−

1

N

+
1

N2

( )+

=

Group identities from birdtracks
(tab)eg (tcd)gf =

N�

a,b=1

(tab tba)cd =
N2 � 1

N
�cd

Just by drawing arrows, can show the
standard relation:



a

a
b

Birdtracks = double line

At large N, trival: drop all trace terms!  Double line notation of ’t Hooft.

Consider expanding about some background field:

�
Acl

0

�
ab

=
2⇡T

g
qa �

ab

iDcl
0 = 2⇡T (n+ 1/2 + qa)

iDcl
0 = 2⇡T (n+ qa � qb)

At any N, quark propagator has a single line, with one color index

At large N, gluons have two lines, with two color indices



Pure gauge transition for SU(N) at large N:

Gross-Witten-Wadia?



QCD on a femtosphere
Consider pure SU(∞) on a spatial sphere so small that coupling is small 
Sundberg, th/9908001; 
Aharony, Marsano, Minwalla, Papadodimas, Van Raamsdonk, th/0310285; th/0508077
Dumitru, Lenaghan, RDP, ph/0410294

Integrate out modes with J ≠ 0, obtain eff. theory for static modes, matrix model
Consider eigenvalues of Wilson line, L = exp(2 π i q)
Take Ai0 ~ qi , i = 1...N.  discrete sum Σi => ∫ dq ρ(q) .  

Solve by usual large N tricks.  At Td, eigenvalue density is

⇢(q) = 1 + cos(2⇡ q) , q : �1/2 ! 1/2

#|
Z

dq ⇢(q) e2⇡i q|2 +
Z

dq

Z
dq0 ⇢(q) ⇢(q0) log |e2⇡iq � e2⇡iq

0
|

N.B. in 2-dim.'s, Gross, Witten, & Wadia found 3rd order transition in lattice β.
Here, at any temperature, find 3rd order transition when 

` =
1

N
trL =

1

2



Gross-Witten-Wadia transition at N=∞
Solution at N=∞: “critical first order” transition -  both first and second order
Latent heat nonzero ~ N2.   And specific heat diverges, Cv ~ 1/(T-Tc)3/5

Potential function of all tr Ln, n = 1, 2....  But at Td+, only first loop is nonzero:
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But Veff flat between them!

` =
1

N
tr L

`(T+
c ) =

1

2

`(T�
c ) = 0

tr Ln (Td) = 0 , n ≥ 2 

T = Td

Potential not 
analytic
at l = 1/2 ↓

Above only for g=0: to ~ g4, standard 1st order transition.  So GWW curiosity?



Simple ansatz: constant, diagonal A0:

At 1-loop order, perturbative potential
Aij

0 =
2⇥T

g
qi �ij , i, j = 1 . . . N

Non-perturbative potential ~ T2 Td2:

Vpert(q) =
2�2

3
T 4

0

@� 4
15

(N2 � 1) +
X

i,j

q2
ij(1� qij)2

1

A , qij = |qi � qj |

General matrix model, 3 colors

Remember model for three colors
Meisinger, Miller, & Ogilvie, ph/0108009. 
A. Dumitru, Y. Guo, Y. Hidaka, C. Korthals-Altes & RDP, 1011.3820, 1205.0137; 
K. Kashiwa, V. Skokov & RDP, 1205.0545; K. Kashiwa & RDP, 1301.5344.

V
non

(q) =
2⇡2

3
T 2T 2

d

(� c1
5

X

i,j

q
ij

(1�q
ij

)�c2
X

i,j

q2
ij

(1�q
ij

)2+
4

15
c3)+BT 4

d



Matrix models at infinite N
Solve SU(N) at N=∞: RDP & V. Skokov, 1206.1329; Nishimura, RDP, & Skokov, to appear
Interface tensions: S. Lin, RDP, & V. Skokov, 1301.7432

Vn(q) =

Z
dq

Z
dq0 ⇢(q) ⇢(q0) |q � q0|n(1� |q � q0|)n

Ve↵(q) = d1 V1 + d2 V2

Take derivatives of equation of motion, at Td solution

⇢(q) = 1 + cos(2⇡ q) , q : �1/2 ! 1/2

At Td, solution identical to GWW model on a femtosphere!  

Solution differs away from Td.  But why same solution at Td? Veff very different.

Is Gross-Witten-Wadia an infrared stable fixed point for pure gauge SU(∞)?
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Remnants of Gross-Witten-Wadia at finite N?
At finite N, solve model numerically.  Find two minima, at 0 and ~ 1/2.
Standard first order transition, with barrier & interface tension nonzero
Barrier disappears at infinite N: so interface tensions vanish at infinite N
Below: potential /(N2-1), versus tr L .

Veff (`)

N2 � 1
"

0↑ ↑ 1/2
h`i !
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Signs of GWW at finite N: interface tensions small at Td?
Consider maximum of previous figure, versus number of colors:
increases by ~ 2 from N = 3 to 5, then decreases monotonically as N increases
Perhaps: non-monotonic behavior of order-disorder interface tension with N?
Below: maximum in potential /(N2-1), versus tr L .

Lattice: order-disorder
interface tension αod at Td:
Lucini, Teper, Wegner, lat/0502003
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Coefficients small, χ2 large, ~ 2.8.
Non-monotonic behavior of αod /N2?
't Hooft loops also small near Td

Remnants of Gross-Witten-Wadia
fixed point at finite N?
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